Probability density function ![]() | |||
Cumulative distribution function ![]() | |||
Parameters |
location (real) scale (real) | ||
---|---|---|---|
Support | |||
CDF | |||
Quantile | |||
Mean | |||
Median | |||
Mode | |||
Variance | |||
MAD | |||
Skewness | |||
Excess kurtosis | |||
Entropy | |||
MGF | |||
CF | |||
Expected shortfall | [1] |
In probability theory and statistics, the Laplace distribution is a continuous probability distribution named after Pierre-Simon Laplace. It is also sometimes called the double exponential distribution, because it can be thought of as two exponential distributions (with an additional location parameter) spliced together along the x-axis,[2] although the term is also sometimes used to refer to the Gumbel distribution. The difference between two independent identically distributed exponential random variables is governed by a Laplace distribution, as is a Brownian motion evaluated at an exponentially distributed random time[citation needed]. Increments of Laplace motion or a variance gamma process evaluated over the time scale also have a Laplace distribution.